A new kernel method for object recognition:spin glass-Markov random fields

نویسنده

  • Barbara Caputo
چکیده

Recognizing objects through vision is an important part of our lives: we recognize people when we talk to them, we recognize our cup on the breakfast table, our car in a parking lot, and so on. While this task is performed with great accuracy and apparently little effort by humans, it is still unclear how this performance is achieved. Creating computer methods for automatic object recognition gives rise to challenging theoretical problems such as how to model the visual appearance of the objects or categories we want to recognize, so that the resulting algorithm will perform robustly in realistic scenarios; to this end, how to use effectively multiple cues (such as shape, color, textural properties and many others), so that the algorithm uses uses the best subset of cues in the most effective manner; how to use specific features and/or specific strategies for different classes. The present work is devoted to the above issues. We propose to model the visual appearance of objects and visual categories via probability density functions. The model is developed on the basis of concepts and results obtained in three different research areas: computer vision, machine learning and statistical physics of spin glasses. It consists of a fully connected Markov random field with energy function derived from results of statistical physics of spin glasses. Markov random fields and spin glass energy functions are combined together via nonlinear kernel functions; we call the model Spin Glass-Markov Random Fields. Full connectivity enables to take into account the global appearance of the object, and its specific local characteristics at the same time, resulting in robustness to noise, occlusions and cluttered background. Because of properties of some classes of spin glasslike energy functions, our model allows to use easily and effectively multiple cues, and to employ class specific strategies. We show with theoretical analysis and experiments that this new model is competitive with state-of-the-art algorithms for object recognition.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Ultrametric Approach to Object Recognition

This paper presents a Bayes classifier with a hierarchical structure for appearance-based object recognition. It consists of a new kernel method, Ultrametric Spin Glass-Markov Random Fields, that integrates results of statistical physics with Gibbs distributions. Experiments show the effectiveness of our approach.

متن کامل

Robust Appearance-Based Object Recognition Using a Fully Connected Markov Random Field

This paper presents a new kernel method for appearance-based object recognition, highly robust to noise and occlusion. It consists of a fully connected Markov Random Field that integrates results of Spin Glass theory with Gibbs probability distributions via nonlinear kernel mapping. We call the resulting model Spin Glass-Markov Random Field. We present theoretical analysis and several experimen...

متن کامل

Combining Color and Shape Information for Appearance-Based Object Recognition Using Ultrametric Spin Glass-Markov Random Fields

Shape and color information are important cues for object recognition. An ideal system should give the option to use both forms of information, as well as the option to use just one of the two. We present in this paper a kernel method that achieves this goal. It is based on results of statistical physics of disordered systems combined with Gibbs distributions via kernel functions. Experimental ...

متن کامل

A spin glass model of a Markov random field

This paper presents a novel algorithm for robust object recognition. We propose to model the visual appearance of objects via probability density functions. The algorithm consists of a fully connected Markov random field with energy function derived from results of statistical physics of spin glasses. Markov random fields and spin glass energy functions are combined together via nonlinear kerne...

متن کامل

Kernel Methods for Melanoma Recognition

Skin cancer is a spreading disease in the western world. Early detection and treatment are crucial for improving the patient survival rate. In this paper we present two algorithms for computer assisted diagnosis of melanomas. The first is the support vector machines algorithm, a state-of-the-art large margin classifier, which has shown remarkable performances on object recognition and categoriz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004